Capacity-Achieving Probability Measure for Conditionally Gaussian Channels With Bounded Inputs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Summary on Capacity Achieving Probability Measure of an Input-Constrained Vector Gaussian Channels

In this summary, the additive Gaussian noise channel subject to two types of constraints: (1) physical channel constraints, and (2) first-order cost constraints is considered. This channel is shown to have a unique capacity achieving input distribution, which is “discrete” in nature. A necessary and sufficient condition for the capacity achieving distribution is also derived. December 22, 2002 ...

متن کامل

Capacity-Achieving Codes with Bounded Graphical Complexity on Noisy Channels

We introduce a new family of concatenated codes with an outer low-density parity-check (LDPC) code and an inner low-density generator matrix (LDGM) code, and prove that these codes can achieve capacity under any memoryless binaryinput output-symmetric (MBIOS) channel using maximum-likelihood (ML) decoding with bounded graphical complexity, i.e., the number of edges per information bit in their ...

متن کامل

Achieving the Stationary Feedback Capacity for Gaussian Channels

In this paper, we study a Gaussian channel with memory and with noiseless feedback, for which we present a coding scheme to achieve the stationary feedback capacity (the maximum information rate over all stationary input distributions, conjectured to be the asymptotic feedback capacity). The coding scheme essentially implements the celebrated Kalman filter algorithm; is equivalent to an estimat...

متن کامل

Capacity-Achieving Codes for Noisy Channels with Bounded Graphical Complexity and Maximum Likelihood Decoding

In this paper, capacity-achieving codes for memoryless binary-input output-symmetric (MBIOS) channels under maximum-likelihood (ML) decoding with bounded graphical complexity are investigated. The graphical complexity of a code is defined as the number of edges in the graphical representation of the code per information bit and is proportional to the decoding complexity per information bit per ...

متن کامل

Capacity-Achieving Schemes for Finite-State Channels

Capacity-Achieving Schemes for Finite-State Channels

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2005

ISSN: 0018-9448

DOI: 10.1109/tit.2005.847707